Super Poincaré Inequalities, Orlicz Norms and Essential Spectrum
نویسندگان
چکیده
منابع مشابه
Global Caccioppoli-Type and Poincaré Inequalities with Orlicz Norms
The L-theory of solutions of the homogeneous A-harmonic equation d A x, dω 0 for differential forms has been very well developed in recent years. Many L-norm estimates and inequalities, including the Hardy-Littlewood inequalities, Poincaré inequalities, Caccioppoli-type estimates, and Sobolev imbedding inequalities, for solutions of the homogeneous A-harmonic equation have been established; see...
متن کاملOrlicz-hardy Inequalities
We relate Orlicz-Hardy inequalities on a bounded Euclidean domain to certain fatness conditions on the complement. In the case of certain log-scale distortions of Ln, this relationship is necessary and sufficient, thus extending results of Ancona, Lewis, and Wannebo. 0. Introduction Suppose Ω ⊂ R is a bounded domain and let d(x) = dist(x, ∂Ω). We consider integral Hardy inequalities (0.1) ∀u ∈ ...
متن کاملAnalytic Norms in Orlicz Spaces
It is shown that an Orlicz sequence space hM admits an equivalent analytic renorming if and only if it is either isomorphic to l2n or isomorphically polyhedral. As a consequence, we show that there exists a separable Banach space admitting an equivalent C∞-Fréchet norm, but no equivalent analytic norm. In this note, we denote by hM as usual the subspace of an Orlicz sequence space lM generated ...
متن کاملKorn Inequalities In Orlicz Spaces
We use gradient estimates for solutions of elliptic equations to obtain Korn’s inequality for fields with zero trace from Orlicz–Sobolev classes. As outlined for example in the monographs of Málek, Nečas, Rokyta, Růžička [MNRR], of Duvaut and Lions [DL] and of Zeidler [Ze], the well-posedness of many variational problems arising in fluid mechanics or in the mechanics of solids heavily depends o...
متن کاملOn Friedrichs – Poincaré - type inequalities ✩
Friedrichsand Poincaré-type inequalities are important and widely used in the area of partial differential equations and numerical analysis. Most of their proofs appearing in references are the argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities in H 1(Ω) and Poincaré-type inequalities in some subspaces of W1,p(Ω). The dependencies of the ine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2010
ISSN: 0926-2601,1572-929X
DOI: 10.1007/s11118-010-9203-z